Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37982755

RESUMO

Improving soybean (Glycine max) seed composition by increasing the protein and oil components will add significant value to the crop and enhance environmental sustainability. Diacylglycerol acyltransferase (DGAT) catalyzes the final rate-limiting step in triacylglycerol (TAG) biosynthesis and has a major impact on seed oil accumulation. We previously identified a soybean DGAT1b variant with 14 amino acid substitutions (GmDGAT1b-MOD) that increases total oil content by 3 percentage points when overexpressed in soybean seeds. In the present study, additional GmDGAT1b variants were generated to further increase oil with a reduced number of substitutions. Variants with one to four amino acid substitutions were screened in the model systems S. cerevisiae and transient N. benthamiana leaf. Promising GmDGAT1b variants resulting in high oil accumulation in the model systems were selected for over-expression in soybeans. One GmDGAT1b variant with three novel amino acid substitutions (GmDGAT1b-3aa) increased total soybean oil to levels near the previously discovered GmDGAT1b-MOD variant. In a multiple location field trial, GmDGAT1b-3aa transgenic events had significantly increased oil and protein by up to 2.3 and 0.6 percentage points, respectively. Modeling of the GmDGAT1b-3aa protein structure provided insights into the potential function of the three substitutions. These findings will guide efforts to improve soybean oil content and overall seed composition by CRISPR editing.

2.
Plant Physiol ; 170(1): 586-99, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26582726

RESUMO

Alternative splicing plays a crucial role in plant development as well as stress responses. Although alternative splicing has been studied during development and in response to stress, the interplay between these two factors remains an open question. To assess the effects of drought stress on developmentally regulated splicing in maize (Zea mays), 94 RNA-seq libraries from ear, tassel, and leaf of the B73 public inbred line were constructed at four developmental stages under both well-watered and drought conditions. This analysis was supplemented with a publicly available series of 53 libraries from developing seed, embryo, and endosperm. More than 48,000 novel isoforms, often with stage- or condition-specific expression, were uncovered, suggesting that developmentally regulated alternative splicing occurs in thousands of genes. Drought induced large developmental splicing changes in leaf and ear but relatively few in tassel. Most developmental stage-specific splicing changes affected by drought were tissue dependent, whereas stage-independent changes frequently overlapped between leaf and ear. A linear relationship was found between gene expression changes in splicing factors and alternative spicing of other genes during development. Collectively, these results demonstrate that alternative splicing is strongly associated with tissue type, developmental stage, and stress condition.


Assuntos
Processamento Alternativo , Regulação da Expressão Gênica de Plantas , Zea mays/fisiologia , Secas , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Estudo de Associação Genômica Ampla , Degradação do RNAm Mediada por Códon sem Sentido , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Estresse Fisiológico/genética , Zea mays/genética , Zea mays/crescimento & desenvolvimento
3.
Plant Cell Environ ; 38(1): 188-200, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24965556

RESUMO

MicroRNAs (miRNAs) are a class of small RNAs, which typically function by guiding cleavage of target mRNAs. They are known to play roles in a variety of plant processes including development, responses to environmental stresses and senescence. To identify senescence regulation of miRNAs in Arabidopsis thaliana, eight small RNA libraries were constructed and sequenced at four different stages of development and senescence from both leaves and siliques, resulting in more than 200 million genome-matched sequences. Parallel analysis of RNA ends libraries, which enable the large-scale examination of miRNA-guided cleavage products, were constructed and sequenced, resulting in over 750 million genome-matched sequences. These large datasets led to the identification a new senescence-inducible small RNA locus, as well as new regulation of known miRNAs and their target genes during senescence, many of which have established roles in nutrient responsiveness and cell structural integrity. In keeping with remobilization of nutrients thought to occur during senescence, many miRNAs and targets had opposite expression pattern changes between leaf and silique tissues during the progression of senescence. Taken together, these findings highlight the integral role that miRNAs may play in the remobilization of resources and alteration of cellular structure that is known to occur in senescence.


Assuntos
Arabidopsis/genética , MicroRNAs/genética , Senescência Celular , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Folhas de Planta/genética , RNA Mensageiro/genética , RNA de Plantas/genética , Análise de Sequência de RNA , Fatores de Tempo
4.
Plant Cell ; 26(9): 3472-87, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25248552

RESUMO

Alternative splicing enhances transcriptome diversity in all eukaryotes and plays a role in plant tissue identity and stress adaptation. To catalog new maize (Zea mays) transcripts and identify genomic loci that regulate alternative splicing, we analyzed over 90 RNA-seq libraries from maize inbred lines B73 and Mo17, as well as Syn10 doubled haploid lines (progenies from B73 × Mo17). Transcript discovery was augmented with publicly available data from 14 maize tissues, expanding the maize transcriptome by more than 30,000 and increasing the percentage of intron-containing genes that undergo alternative splicing to 40%. These newly identified transcripts greatly increase the diversity of the maize proteome, sometimes coding for entirely different proteins compared with their most similar annotated isoform. In addition to increasing proteome diversity, many genes encoding novel transcripts gained an additional layer of regulation by microRNAs, often in a tissue-specific manner. We also demonstrate that the majority of genotype-specific alternative splicing can be genetically mapped, with cis-acting quantitative trait loci (QTLs) predominating. A large number of trans-acting QTLs were also apparent, with nearly half located in regions not shown to contain genes associated with splicing. Taken together, these results highlight the currently underappreciated role that alternative splicing plays in tissue identity and genotypic variation in maize.


Assuntos
Processamento Alternativo/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Zea mays/genética , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Genes de Plantas , Variação Genética , Genótipo , MicroRNAs/genética , MicroRNAs/metabolismo , Especificidade de Órgãos/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma/metabolismo , Locos de Características Quantitativas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de RNA
5.
Plant Physiol ; 162(3): 1225-45, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23709668

RESUMO

MicroRNAs (miRNAs) are a class of small RNAs that typically function by guiding the cleavage of target messenger RNAs. They have been shown to play major roles in a variety of plant processes, including development, and responses to pathogens and environmental stresses. To identify new miRNAs and regulation in Arabidopsis (Arabidopsis thaliana), 27 small RNA libraries were constructed and sequenced from various tissues, stresses, and small RNA biogenesis mutants, resulting in 95 million genome-matched sequences. The use of rdr2 to enrich the miRNA population greatly enhanced this analysis and led to the discovery of new miRNAs arising from both known and new precursors, increasing the total number of Arabidopsis miRNAs by about 10%. Parallel Analysis of RNA Ends data provide evidence that the majority guide target cleavage. Many libraries represented novel stress/tissue conditions, such as submergence-stressed flowers, which enabled the identification of new stress regulation of both miRNAs and their targets, all of which were validated in wild-type plants. By combining small RNA expression analysis with ARGONAUTE immunoprecipitation data and global target cleavage data from Parallel Analysis of RNA Ends, a much more complete picture of Arabidopsis miRNAs was obtained. In particular, the discovery of ARGONAUTE loading and target cleavage biases gave important insights into tissue-specific expression patterns, pathogen responses, and the role of sequence variation among closely related miRNA family members that would not be evident without this combinatorial approach.


Assuntos
Arabidopsis/genética , Proteínas Argonautas/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Biblioteca Gênica , Variação Genética , Mutação , Proteínas de Plantas/genética , Estresse Fisiológico/genética
6.
Methods Mol Biol ; 592: 203-30, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19802598

RESUMO

MicroRNAs (miRNAs) are small regulatory noncoding RNAs varying in length between 20 and 24 nucleotides. They play a key role during plant development by negatively regulating gene expression at the posttranscriptional level. Moreover, recent studies reported several miRNAs associated with abiotic stress responses. Small RNA cloning and high-throughput deep sequencing methods provide expression profiles of not only known miRNAs, but also novel miRNAs. In this chapter, we describe the methods used to identify and characterize abiotic stress-associated miRNAs and their target genes.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , Temperatura Baixa , Biologia Computacional , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fosfatos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sais/farmacologia , Sulfatos/metabolismo
7.
RNA ; 15(12): 2147-60, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19850906

RESUMO

Deep sequencing technologies such as Illumina, SOLiD, and 454 platforms have become very powerful tools in discovering and quantifying small RNAs in diverse organisms. Sequencing small RNA fractions always identifies RNAs derived from abundant RNA species such as rRNAs, tRNAs, snRNA, and snoRNA, and they are widely considered to be random degradation products. We carried out bioinformatic analysis of deep sequenced HeLa RNA and after quality filtering, identified highly abundant small RNA fragments, derived from mature tRNAs that are likely produced by specific processing rather than from random degradation. Moreover, we showed that the processing of small RNAs derived from tRNA(Gln) is dependent on Dicer in vivo and that Dicer cleaves the tRNA in vitro.


Assuntos
RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Ribonuclease III/metabolismo , Sequência de Bases , Biologia Computacional , Células HeLa , Humanos , MicroRNAs/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Splicing de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/isolamento & purificação , RNA de Transferência/genética
8.
Proc Natl Acad Sci U S A ; 105(12): 4951-6, 2008 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-18353984

RESUMO

Small RNAs (21-24 nt) are involved in gene regulation through translation inhibition, mRNA cleavage, or directing chromatin modifications. In rice, currently approximately 240 microRNAs (miRNAs) have been annotated. We sequenced more than four million small RNAs from rice and identified another 24 miRNA genes. Among these, we found a unique class of miRNAs that derive from natural cis-antisense transcript pairs. This configuration generates miRNAs that can perfectly match their targets. We provide evidence that the miRNAs function by inducing mRNA cleavage in the middle of their complementary site. Their production requires Dicer-like 1 (DCL1) activity, which is essential for canonical miRNA biogenesis. All of the natural antisense miRNAs (nat-miRNAs) identified in this study have large introns in their precursors that appear critical for nat-miRNA evolution and for the formation of functional miRNA loci. These findings suggest that other natural cis-antisense loci with similar exon-intron arrangements could be another source of miRNA genes.


Assuntos
Genoma de Planta/genética , MicroRNAs/genética , Oryza/genética , RNA Antissenso/genética , Sequência de Bases , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , MicroRNAs/biossíntese , MicroRNAs/química , Modelos Biológicos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...